首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13282篇
  免费   1109篇
  国内免费   7篇
  2023年   43篇
  2022年   33篇
  2021年   228篇
  2020年   160篇
  2019年   230篇
  2018年   340篇
  2017年   259篇
  2016年   456篇
  2015年   686篇
  2014年   826篇
  2013年   868篇
  2012年   1129篇
  2011年   1011篇
  2010年   705篇
  2009年   615篇
  2008年   828篇
  2007年   784篇
  2006年   713篇
  2005年   675篇
  2004年   670篇
  2003年   562篇
  2002年   485篇
  2001年   341篇
  2000年   271篇
  1999年   235篇
  1998年   113篇
  1997年   90篇
  1996年   67篇
  1995年   69篇
  1994年   47篇
  1993年   38篇
  1992年   81篇
  1991年   91篇
  1990年   55篇
  1989年   57篇
  1988年   48篇
  1987年   50篇
  1986年   35篇
  1985年   38篇
  1984年   33篇
  1983年   20篇
  1982年   20篇
  1980年   19篇
  1979年   20篇
  1978年   24篇
  1977年   26篇
  1976年   25篇
  1974年   24篇
  1973年   19篇
  1971年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.

Objective

To understand and predict chronic obstructive pulmonary disease (COPD), a biomarker that reflects disease severity is needed.

Research Design and Methods

Data from 10269 adults aged over 40 years of age were retrieved from the Korea National Health and Nutrition Examination Survey (KNHANES), and 1302 patients met the criteria for COPD. The association between values of vitamin D and parathyroid hormone (PTH), and COPD severity including lung function and quality of life, were analyzed.

Results

In COPD patients, lung function was inversely related to PTH values (P = 0.02 for FVC [% predicted]; P < 0.001 for FEV1 [% predicted]); however, the association of lung function with vitamin D levels was not statistically significant in a multivariable analysis. Value of PTH was independently associated with EQ5D-index (P = 0.04), but vitamin D level showed no significant relationship with EQ5D-index (P = 0.59) or EQ5D-VAS (P = 0.81).

Conclusions

Elevation of PTH, unlike vitamin D, is independently associated with COPD severity, and may be a better biomarker for COPD.  相似文献   
992.

Background

Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.

Aim

To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury.

Methods

Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.

Results

Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.

Conclusions

CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.  相似文献   
993.

Objective

To evaluate the efficacy and safety of sorafenib for Korean patients with metastatic renal cell carcinoma (mRCC).

Methods

A total of 177 mRCC patients using sorafenib as first- (N = 116), second- (N = 43), and third-line (N = 18) therapies were enrolled from 11 Korean centers between 2006 and 2012. The patient characteristics, therapy duration, tumor response, disease control rate, and tolerability were assessed at baseline and at routine follow-ups, and the progression-free survival (PFS) and overall survival (OS) times and rates were analyzed.

Results

Among all patients, 18 (10.2%) stopped sorafenib treatment for a median of 1.7 weeks, including 15 (8.5%) who discontinued the drug, while 40 (22.6%) and 12 (6.8%) patients required dose reductions and drug interruptions, respectively. Severe adverse events (AEs) or poor compliance was observed in 64 (36.2%) patients, with 118 (7.4%) ≥grade 3 AEs. During the treatment, one myocardial infarction was observed. The number of ≥grade 3 AEs in the first-line sorafenib group was 71 (6.8% of the total 1048 AEs). During a median follow-up of 17.2 months, the radiologically confirmed best objective response rate, disease control rate, median PFS, and median OS were 22.0%, 53.0%, 6.4 months (95% confidence interval [CI], 5.2–8.9), and 32.6 months (95% CI, 27.3–63.8) for the total 177 sorafenib-treated patients, respectively, and 23.2%, 56.0%, 7.4 months (95% CI, 5.5–10.5), and not reached yet (95% CI, 1.0–31.1) for the first-line sorafenib group, respectively.

Conclusions

Sorafenib produced tolerable safety, with a ≥grade 3 AE rate of 7.4% and an acceptable disease control rate (53.0%) in Korean mRCC patients.  相似文献   
994.
995.
996.
Asexual development (conidiation) of the filamentous fungus Aspergillus nidulans occurs via balanced activities of multiple positive and negative regulators. For instance, FluG (+) and SfgA (−) govern upstream regulation of the developmental switch, and BrlA (+) and VosA (−) control the progression and completion of conidiation. To identify negative regulators of conidiation downstream of FluG-SfgA, we carried out multicopy genetic screens using sfgA deletion strains. After visually screening >100,000 colonies, we isolated 61 transformants exhibiting reduced conidiation. Responsible genes were identified as AN3152 (nsdD), AN7507, AN2009, AN1652, AN5833, and AN9141. Importantly, nsdD, a key activator of sexual reproduction, was present in 10 independent transformants. Furthermore, deletion, overexpression, and double-mutant analyses of individual genes have led to the conclusion that, of the six genes, only nsdD functions in the FluG-activated conidiation pathway. The deletion of nsdD bypassed the need for fluG and flbAflbE, but not brlA or abaA, in conidiation, and partially restored production of the mycotoxin sterigmatocystin (ST) in the ΔfluG, ΔflbA, and ΔflbB mutants, suggesting that NsdD is positioned between FLBs and BrlA in A. nidulans. Nullifying nsdD caused formation of conidiophores in liquid submerged cultures, where wild-type strains do not develop. Moreover, the removal of both nsdD and vosA resulted in even more abundant development of conidiophores in liquid submerged cultures and high-level accumulation of brlA messenger (m)RNA even at 16 hr of vegetative growth. Collectively, NsdD is a key negative regulator of conidiation and likely exerts its repressive role via downregulating brlA.  相似文献   
997.
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.  相似文献   
998.
Here we explored the impact of hydrogen sulfide (H2S) on biophysical properties of the primary human airway smooth muscle (ASM)–the end effector of acute airway narrowing in asthma. Using magnetic twisting cytometry (MTC), we measured dynamic changes in the stiffness of isolated ASM, at the single-cell level, in response to varying doses of GYY4137 (1–10 mM). GYY4137 slowly released appreciable levels of H2S in the range of 10–275 μM, and H2S released was long lived. In isolated human ASM cells, GYY4137 acutely decreased stiffness (i.e. an indicator of the single-cell relaxation) in a dose-dependent fashion, and stiffness decreases were sustained in culture for 24 h. Human ASM cells showed protein expressions of cystathionine-γ-lyase (CSE; a H2S synthesizing enzyme) and ATP-sensitive potassium (KATP) channels. The KATP channel opener pinacidil effectively relaxed isolated ASM cells. In addition, pinacidil-induced ASM relaxation was completely inhibited by the treatment of cells with the KATP channel blocker glibenclamide. Glibenclamide also markedly attenuated GYY4137-mediated relaxation of isolated human ASM cells. Taken together, our findings demonstrate that H2S causes the relaxation of human ASM and implicate as well the role for sarcolemmal KATP channels. Finally, given that ASM cells express intrinsic enzymatic machinery of generating H2S, we suggest thereby this class of gasotransmitter can be further exploited for potential therapy against obstructive lung disease.  相似文献   
999.
1000.
Arginase may play a major role in the regulation of vascular function in various cardiovascular disorders by impairing nitric oxide (NO) production. In the current study, we investigated whether supplementation of the arginase inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA) could restore endothelial function in an animal model of diet-induced obesity. Arginase 1 expression was significantly lower in the aorta of C57BL/6J mice fed a high-fat diet (HFD) supplemented with nor-NOHA (40 mg kg-1/day) than in mice fed HFD without nor-NOHA. Arginase inhibition led to considerable increases in eNOS expression and NO levels and significant decreases in the levels of circulating ICAM-1. These findings were further confirmed by the results of siRNA-mediated knockdown of Arg in human umbilical vein endothelial cells. In conclusion, arginase inhibition can help restore dysregulated endothelial function by increasing the eNOS-dependent NO production in the endothelium, indicating that arginase could be a therapeutic target for correcting obesity-induced vascular endothelial dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号